Ergodic sets

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ergodic Sets

Introduction. Ergodic sets were introduced by Kryloff and Bogoliouboff in 1937 in connection with their study of compact dynamical systems [16]. The purpose of this paper is to review some of the work that has since been done on the theory that centers around this notion, and to present a number of supplementary remarks, applications, and simplifications. For simplicity we shall confine attenti...

متن کامل

Ergodic Theory and Visualization I: Visualization of Ergodic Partition and Invariant Sets

———————————————————————————————————————We present a computational study of the invariant sets visualization method based on ergodic partition theory, firstly proposed in [1]. The algorithms for computation of the time averages of many L functions are developed and employed producing the approximation of the phase space ergodic partitioning. The method is exposed in the context of discrete-time ...

متن کامل

Polynomial Largeness of Sumsets and Totally Ergodic Sets

We prove that a sumset of a TE subset of N (these sets can be viewed as “aperiodic” sets) with a set of positive upper density intersects any polynomial sequence. For WM sets (subclass of TE sets) we prove that the intersection has lower Banach density one. In addition we obtain a generalization of the latter result to the case of several polynomials.

متن کامل

Ergodic Sets as Cell Phenotype of Budding Yeast Cell Cycle

It has been suggested that irreducible sets of states in Probabilistic Boolean Networks correspond to cellular phenotype. In this study, we identify such sets of states for each phase of the budding yeast cell cycle. We find that these "ergodic sets" underly the cyclin activity levels during each phase of the cell cycle. Our results compare to the observations made in several laboratory experim...

متن کامل

Polynomial Largeness of Sumsets and Totally Ergodic Sets

We prove that a sumset of a TE subset of N (these sets can be viewed as “aperiodic” sets) with a set of positive upper density intersects any polynomial sequence. For WM sets (subclass of TE sets) we prove that the intersection has lower Banach density one. In addition we obtain a generalization of the latter result to the case of several polynomials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1952

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1952-09580-x